gd_dl.rerank_model.Weight_CGConv

class gd_dl.rerank_model.Weight_CGConv(channels: int | Tuple[int, int], dim: int = 0, aggr: str = 'add', batch_norm: bool = False, bias: bool = True, **kwargs)[source]

The crystal graph convolutional operator from the “Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties” paper

__init__(channels: int | Tuple[int, int], dim: int = 0, aggr: str = 'add', batch_norm: bool = False, bias: bool = True, **kwargs)[source]

Initialize internal Module state, shared by both nn.Module and ScriptModule.

Methods

__init__(channels[, dim, aggr, batch_norm, bias])

Initialize internal Module state, shared by both nn.Module and ScriptModule.

add_module(name, module)

Add a child module to the current module.

aggregate(inputs, index[, ptr, dim_size])

Aggregates messages from neighbors as \(\bigoplus_{j \in \mathcal{N}(i)}\).

apply(fn)

Apply fn recursively to every submodule (as returned by .children()) as well as self.

bfloat16()

Casts all floating point parameters and buffers to bfloat16 datatype.

buffers([recurse])

Return an iterator over module buffers.

children()

Return an iterator over immediate children modules.

compile(*args, **kwargs)

Compile this Module's forward using torch.compile().

cpu()

Move all model parameters and buffers to the CPU.

cuda([device])

Move all model parameters and buffers to the GPU.

double()

Casts all floating point parameters and buffers to double datatype.

edge_update()

Computes or updates features for each edge in the graph.

edge_updater(edge_index[, size])

The initial call to compute or update features for each edge in the graph.

eval()

Set the module in evaluation mode.

explain_message(inputs, dim_size)

extra_repr()

Set the extra representation of the module.

float()

Casts all floating point parameters and buffers to float datatype.

forward(x, edge_index[, edge_attr, edge_weight])

get_buffer(target)

Return the buffer given by target if it exists, otherwise throw an error.

get_extra_state()

Return any extra state to include in the module's state_dict.

get_parameter(target)

Return the parameter given by target if it exists, otherwise throw an error.

get_submodule(target)

Return the submodule given by target if it exists, otherwise throw an error.

half()

Casts all floating point parameters and buffers to half datatype.

ipu([device])

Move all model parameters and buffers to the IPU.

jittable([typing])

Analyzes the MessagePassing instance and produces a new jittable module that can be used in combination with torch.jit.script().

load_state_dict(state_dict[, strict, assign])

Copy parameters and buffers from state_dict into this module and its descendants.

message(x_i, x_j, edge_attr)

Constructs messages from node \(j\) to node \(i\) in analogy to \(\phi_{\mathbf{\Theta}}\) for each edge in edge_index.

message_and_aggregate(edge_index)

Fuses computations of message() and aggregate() into a single function.

modules()

Return an iterator over all modules in the network.

named_buffers([prefix, recurse, ...])

Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.

named_children()

Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.

named_modules([memo, prefix, remove_duplicate])

Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.

named_parameters([prefix, recurse, ...])

Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.

parameters([recurse])

Return an iterator over module parameters.

propagate(edge_index[, size])

The initial call to start propagating messages.

register_aggregate_forward_hook(hook)

Registers a forward hook on the module.

register_aggregate_forward_pre_hook(hook)

Registers a forward pre-hook on the module.

register_backward_hook(hook)

Register a backward hook on the module.

register_buffer(name, tensor[, persistent])

Add a buffer to the module.

register_edge_update_forward_hook(hook)

Registers a forward hook on the module.

register_edge_update_forward_pre_hook(hook)

Registers a forward pre-hook on the module.

register_forward_hook(hook, *[, prepend, ...])

Register a forward hook on the module.

register_forward_pre_hook(hook, *[, ...])

Register a forward pre-hook on the module.

register_full_backward_hook(hook[, prepend])

Register a backward hook on the module.

register_full_backward_pre_hook(hook[, prepend])

Register a backward pre-hook on the module.

register_load_state_dict_post_hook(hook)

Register a post hook to be run after module's load_state_dict is called.

register_message_and_aggregate_forward_hook(hook)

Registers a forward hook on the module.

register_message_and_aggregate_forward_pre_hook(hook)

Registers a forward pre-hook on the module.

register_message_forward_hook(hook)

Registers a forward hook on the module.

register_message_forward_pre_hook(hook)

Registers a forward pre-hook on the module.

register_module(name, module)

Alias for add_module().

register_parameter(name, param)

Add a parameter to the module.

register_propagate_forward_hook(hook)

Registers a forward hook on the module.

register_propagate_forward_pre_hook(hook)

Registers a forward pre-hook on the module.

register_state_dict_pre_hook(hook)

Register a pre-hook for the state_dict() method.

requires_grad_([requires_grad])

Change if autograd should record operations on parameters in this module.

reset_parameters()

Resets all learnable parameters of the module.

set_extra_state(state)

Set extra state contained in the loaded state_dict.

share_memory()

See torch.Tensor.share_memory_().

state_dict(*args[, destination, prefix, ...])

Return a dictionary containing references to the whole state of the module.

to(*args, **kwargs)

Move and/or cast the parameters and buffers.

to_empty(*, device[, recurse])

Move the parameters and buffers to the specified device without copying storage.

train([mode])

Set the module in training mode.

type(dst_type)

Casts all parameters and buffers to dst_type.

update(inputs)

Updates node embeddings in analogy to \(\gamma_{\mathbf{\Theta}}\) for each node \(i \in \mathcal{V}\).

xpu([device])

Move all model parameters and buffers to the XPU.

zero_grad([set_to_none])

Reset gradients of all model parameters.

Attributes

SUPPORTS_FUSED_EDGE_INDEX

T_destination

call_super_init

decomposed_layers

dump_patches

explain

special_args

training