promptbind.data.data.FABindDataSet

class promptbind.data.data.FABindDataSet(root, data=None, protein_dict=None, compound_dict=None, proteinMode=0, compoundMode=1, add_noise_to_com=None, pocket_radius=20, contactCutoff=8.0, predDis=True, args=None, use_whole_protein=False, compound_coords_init_mode=None, seed=42, pre=None, transform=None, pre_transform=None, pre_filter=None, noise_for_predicted_pocket=5.0, test_random_rotation=False, pocket_idx_no_noise=True, use_esm2_feat=False)[source]
__init__(root, data=None, protein_dict=None, compound_dict=None, proteinMode=0, compoundMode=1, add_noise_to_com=None, pocket_radius=20, contactCutoff=8.0, predDis=True, args=None, use_whole_protein=False, compound_coords_init_mode=None, seed=42, pre=None, transform=None, pre_transform=None, pre_filter=None, noise_for_predicted_pocket=5.0, test_random_rotation=False, pocket_idx_no_noise=True, use_esm2_feat=False)[source]

Methods

__init__(root[, data, protein_dict, ...])

download()

Downloads the dataset to the self.raw_dir folder.

get(idx)

Gets the data object at index idx.

get_summary()

Collects summary statistics for the dataset.

index_select(idx)

Creates a subset of the dataset from specified indices idx.

indices()

len()

Returns the number of data objects stored in the dataset.

print_summary([fmt])

Prints summary statistics of the dataset to the console.

process()

Processes the dataset to the self.processed_dir folder.

shuffle([return_perm])

Randomly shuffles the examples in the dataset.

to_datapipe()

Converts the dataset into a torch.utils.data.DataPipe.

Attributes

has_download

Checks whether the dataset defines a download() method.

has_process

Checks whether the dataset defines a process() method.

num_classes

Returns the number of classes in the dataset.

num_edge_features

Returns the number of features per edge in the dataset.

num_features

Returns the number of features per node in the dataset.

num_node_features

Returns the number of features per node in the dataset.

processed_dir

processed_file_names

The name of the files in the self.processed_dir folder that must be present in order to skip processing.

processed_paths

The absolute filepaths that must be present in order to skip processing.

raw_dir

raw_file_names

The name of the files in the self.raw_dir folder that must be present in order to skip downloading.

raw_paths

The absolute filepaths that must be present in order to skip downloading.