diffalign.models.epsnet.diffusion¶
Functions
|
Nichol & Dhariwal (2021): https://arxiv.org/abs/2102.09672 Returns betas of length T (float32). |
|
|
|
|
|
Merge as [Q1,R1,Q2,R2,...] and attach graph_idx (even=query, odd=ref) and pair-level batch. |
Classes
|
SinusoidalPosEmb + MLP for timestep embeddings. |
|
Isotropic Gaussian Diffusion (v-parameterization; T steps) - Backbone: EGNN + CrossGraphAligner (only query coordinates move) - Output: v_t in merged (Q,R) order - Loss: v MSE + x0 anchor + optional repulsion |
|
Sine/cosine timestep embedding (float32). |