promptbind.utils.fabind_inference_dataset.InferenceDataset¶
- class promptbind.utils.fabind_inference_dataset.InferenceDataset(index_csv, pdb_file_dir, preprocess_dir)[source]¶
-
Methods
__init__(index_csv, pdb_file_dir, preprocess_dir)download()Downloads the dataset to the
self.raw_dirfolder.get(idx)Gets the data object at index
idx.get_summary()Collects summary statistics for the dataset.
index_select(idx)Creates a subset of the dataset from specified indices
idx.indices()len()Returns the number of data objects stored in the dataset.
print_summary([fmt])Prints summary statistics of the dataset to the console.
process()Processes the dataset to the
self.processed_dirfolder.shuffle([return_perm])Randomly shuffles the examples in the dataset.
to_datapipe()Converts the dataset into a
torch.utils.data.DataPipe.Attributes
has_downloadChecks whether the dataset defines a
download()method.has_processChecks whether the dataset defines a
process()method.num_classesReturns the number of classes in the dataset.
num_edge_featuresReturns the number of features per edge in the dataset.
num_featuresReturns the number of features per node in the dataset.
num_node_featuresReturns the number of features per node in the dataset.
processed_dirprocessed_file_namesThe name of the files in the
self.processed_dirfolder that must be present in order to skip processing.processed_pathsThe absolute filepaths that must be present in order to skip processing.
raw_dirraw_file_namesThe name of the files in the
self.raw_dirfolder that must be present in order to skip downloading.raw_pathsThe absolute filepaths that must be present in order to skip downloading.