promptbind.utils.fabind_inference_dataset.InferenceDataset

class promptbind.utils.fabind_inference_dataset.InferenceDataset(index_csv, pdb_file_dir, preprocess_dir)[source]
__init__(index_csv, pdb_file_dir, preprocess_dir)[source]

Methods

__init__(index_csv, pdb_file_dir, preprocess_dir)

download()

Downloads the dataset to the self.raw_dir folder.

get(idx)

Gets the data object at index idx.

get_summary()

Collects summary statistics for the dataset.

index_select(idx)

Creates a subset of the dataset from specified indices idx.

indices()

len()

Returns the number of data objects stored in the dataset.

print_summary([fmt])

Prints summary statistics of the dataset to the console.

process()

Processes the dataset to the self.processed_dir folder.

shuffle([return_perm])

Randomly shuffles the examples in the dataset.

to_datapipe()

Converts the dataset into a torch.utils.data.DataPipe.

Attributes

has_download

Checks whether the dataset defines a download() method.

has_process

Checks whether the dataset defines a process() method.

num_classes

Returns the number of classes in the dataset.

num_edge_features

Returns the number of features per edge in the dataset.

num_features

Returns the number of features per node in the dataset.

num_node_features

Returns the number of features per node in the dataset.

processed_dir

processed_file_names

The name of the files in the self.processed_dir folder that must be present in order to skip processing.

processed_paths

The absolute filepaths that must be present in order to skip processing.

raw_dir

raw_file_names

The name of the files in the self.raw_dir folder that must be present in order to skip downloading.

raw_paths

The absolute filepaths that must be present in order to skip downloading.