deepfold.utils package¶
Subpackages¶
- deepfold.utils.geometry package
- Submodules
- deepfold.utils.geometry.quat_rigid module
- deepfold.utils.geometry.rigid_matrix_vector module
Rigid3Array
Rigid3Array.apply()
Rigid3Array.apply_inverse_to_point()
Rigid3Array.apply_to_point()
Rigid3Array.cat()
Rigid3Array.compose()
Rigid3Array.compose_rotation()
Rigid3Array.cuda()
Rigid3Array.device
Rigid3Array.dtype
Rigid3Array.from_array()
Rigid3Array.from_array4x4()
Rigid3Array.from_tensor_4x4()
Rigid3Array.identity()
Rigid3Array.inverse()
Rigid3Array.invert_apply()
Rigid3Array.map_tensor_fn()
Rigid3Array.reshape()
Rigid3Array.rotation
Rigid3Array.scale_translation()
Rigid3Array.shape
Rigid3Array.stop_rot_gradient()
Rigid3Array.to_tensor()
Rigid3Array.to_tensor_4x4()
Rigid3Array.translation
Rigid3Array.unsqueeze()
- deepfold.utils.geometry.rotation_matrix module
Rot3Array
Rot3Array.apply_inverse_to_point()
Rot3Array.apply_to_point()
Rot3Array.cat()
Rot3Array.from_array()
Rot3Array.from_quaternion()
Rot3Array.from_two_vectors()
Rot3Array.identity()
Rot3Array.inverse()
Rot3Array.map_tensor_fn()
Rot3Array.reshape()
Rot3Array.stop_gradient()
Rot3Array.to_tensor()
Rot3Array.unsqueeze()
Rot3Array.xx
Rot3Array.xy
Rot3Array.xz
Rot3Array.yx
Rot3Array.yy
Rot3Array.yz
Rot3Array.zx
Rot3Array.zy
Rot3Array.zz
- deepfold.utils.geometry.utils module
- deepfold.utils.geometry.vector module
Vec3Array
Vec3Array.cat()
Vec3Array.clone()
Vec3Array.cross()
Vec3Array.dot()
Vec3Array.from_array()
Vec3Array.map_tensor_fn()
Vec3Array.norm()
Vec3Array.norm2()
Vec3Array.normalized()
Vec3Array.reshape()
Vec3Array.shape
Vec3Array.sum()
Vec3Array.to_tensor()
Vec3Array.unsqueeze()
Vec3Array.x
Vec3Array.y
Vec3Array.z
Vec3Array.zeros()
cross()
dihedral_angle()
dot()
euclidean_distance()
norm()
normalized()
square_euclidean_distance()
- Module contents
Rigid
Rigid.apply()
Rigid.apply_rot_fn()
Rigid.apply_trans_fn()
Rigid.cat()
Rigid.compose()
Rigid.compose_q_update_vec()
Rigid.cuda()
Rigid.device
Rigid.dtype
Rigid.from_3_points()
Rigid.from_tensor_4x4()
Rigid.from_tensor_7()
Rigid.get_rots()
Rigid.get_trans()
Rigid.identity()
Rigid.invert()
Rigid.invert_apply()
Rigid.make_transform_from_reference()
Rigid.map_tensor_fn()
Rigid.scale_translation()
Rigid.shape
Rigid.stop_rot_gradient()
Rigid.to_tensor_4x4()
Rigid.to_tensor_7()
Rigid.unsqueeze()
Rigid3Array
Rigid3Array.apply()
Rigid3Array.apply_inverse_to_point()
Rigid3Array.apply_to_point()
Rigid3Array.cat()
Rigid3Array.compose()
Rigid3Array.compose_rotation()
Rigid3Array.cuda()
Rigid3Array.device
Rigid3Array.dtype
Rigid3Array.from_array()
Rigid3Array.from_array4x4()
Rigid3Array.from_tensor_4x4()
Rigid3Array.identity()
Rigid3Array.inverse()
Rigid3Array.invert_apply()
Rigid3Array.map_tensor_fn()
Rigid3Array.reshape()
Rigid3Array.rotation
Rigid3Array.scale_translation()
Rigid3Array.shape
Rigid3Array.stop_rot_gradient()
Rigid3Array.to_tensor()
Rigid3Array.to_tensor_4x4()
Rigid3Array.translation
Rigid3Array.unsqueeze()
Rot3Array
Rot3Array.apply_inverse_to_point()
Rot3Array.apply_to_point()
Rot3Array.cat()
Rot3Array.from_array()
Rot3Array.from_quaternion()
Rot3Array.from_two_vectors()
Rot3Array.identity()
Rot3Array.inverse()
Rot3Array.map_tensor_fn()
Rot3Array.reshape()
Rot3Array.stop_gradient()
Rot3Array.to_tensor()
Rot3Array.unsqueeze()
Rot3Array.xx
Rot3Array.xy
Rot3Array.xz
Rot3Array.yx
Rot3Array.yy
Rot3Array.yz
Rot3Array.zx
Rot3Array.zy
Rot3Array.zz
Rotation
Rotation.apply()
Rotation.cat()
Rotation.compose_q()
Rotation.compose_q_update_vec()
Rotation.compose_r()
Rotation.cuda()
Rotation.detach()
Rotation.device
Rotation.dtype
Rotation.get_cur_rot()
Rotation.get_quats()
Rotation.get_rot_mats()
Rotation.identity()
Rotation.invert()
Rotation.invert_apply()
Rotation.map_tensor_fn()
Rotation.requires_grad
Rotation.shape
Rotation.to()
Rotation.unsqueeze()
Vec3Array
Vec3Array.cat()
Vec3Array.clone()
Vec3Array.cross()
Vec3Array.dot()
Vec3Array.from_array()
Vec3Array.map_tensor_fn()
Vec3Array.norm()
Vec3Array.norm2()
Vec3Array.normalized()
Vec3Array.reshape()
Vec3Array.shape
Vec3Array.sum()
Vec3Array.to_tensor()
Vec3Array.unsqueeze()
Vec3Array.x
Vec3Array.y
Vec3Array.z
Vec3Array.zeros()
dihedral_angle()
euclidean_distance()
square_euclidean_distance()
Submodules¶
deepfold.utils.checkpoint_utils module¶
- deepfold.utils.checkpoint_utils.map_init_state_dicts(alphafold_state_dict_keys: List[str], init_alphafold_state_dict: dict, init_optimizer_state_dict: dict) Tuple[dict, dict] ¶
- deepfold.utils.checkpoint_utils.resume_checkpoint(alphafold: AlphaFold, optimizer: Optimizer | None, swa_alphafold: AlphaFoldSWA | None, checkpoint_dirpath: Path, device: device) int ¶
- deepfold.utils.checkpoint_utils.resume_from_latest_checkpoint(alphafold: AlphaFold, optimizer: Optimizer | None, swa_alphafold: AlphaFoldSWA | None, checkpoints_dirpath: Path, device: device) int ¶
- deepfold.utils.checkpoint_utils.save_checkpoint(alphafold: AlphaFold, optimizer: Optimizer, swa_alphafold: AlphaFoldSWA, iteration: int, checkpoint_dirpath: Path) None ¶
- deepfold.utils.checkpoint_utils.save_last_checkpoint(alphafold: AlphaFold, optimizer: Optimizer, swa_alphafold: AlphaFoldSWA, iteration: int, checkpoints_dirpath: Path, keep_last_checkpoints: int) None ¶
- deepfold.utils.checkpoint_utils.save_val_checkpoint(alphafold: AlphaFold | AlphaFoldSWA, iteration: int, checkpoints_dirpath: Path, keep_val_checkpoints: bool, val_avg_lddt_ca: float) None ¶
deepfold.utils.chunk_utils module¶
- deepfold.utils.chunk_utils.chunk_layer(layer: Callable, inputs: Dict[str, Any], chunk_size: int, num_batch_dims: int, low_mem: bool = False, _out: Any | None = None, _add_into_out: bool = False) Any ¶
Implements the “chunking” procedure described in section 1.11.8.
Layer outputs and inputs are assumed to be simple “pytrees,” consisting only of (arbitrarily nested) lists, tuples, and dicts with torch.Tensor leaves.
- Parameters:
layer – The layer to be applied chunk-wise
inputs – A (non-nested) dictionary of keyworded inputs. All leaves must be tensors and must share the same batch dimensions.
chunk_size – The number of sub-batches per chunk. If multiple batch dimensions are specified, a “sub-batch” is defined as a single indexing of all batch dimensions simultaneously (s.t. the number of sub-batches is the product of the batch dimensions).
no_batch_dims – How many of the initial dimensions of each input tensor can be considered batch dimensions.
low_mem – Avoids flattening potentially large input tensors. Unnecessary in most cases, and is ever so slightly slower than the default setting.
- Returns:
The reassembled output of the layer on the inputs.
deepfold.utils.crop_utils module¶
- deepfold.utils.crop_utils.unpad_to_schema_shape_(outputs: Dict[str, ndarray], output_schema_shapes: Dict[str, tuple], num_residues: int, num_clustered_msa_seq: int) Dict[str, ndarray] ¶
deepfold.utils.datetime_utils module¶
- deepfold.utils.datetime_utils.datetime_from_string(datetime_string: str, datetime_format: str = '%Y-%m-%d %H:%M:%S') datetime ¶
Converts string to datetime object.
- deepfold.utils.datetime_utils.datetime_to_string(datetime_object: datetime, string_format: str = '%Y-%m-%d %H:%M:%S') str ¶
Converts datetime object to string.
- deepfold.utils.datetime_utils.get_timestamp_string() str ¶
Returns timestamp in YYYYmmdd_HHMMSS_ffffff format.
deepfold.utils.dist_utils module¶
- deepfold.utils.dist_utils.get_pad_size(tensor: Tensor, dim: int, num_chunks: int) int ¶
- deepfold.utils.dist_utils.pad_tensor(tensor: Tensor, dim: int, pad_size: int) Tensor ¶
deepfold.utils.feats_utils module¶
- deepfold.utils.feats_utils.crop_a3m_string(a3m_string: str, start: int, end: int) str ¶
- deepfold.utils.feats_utils.crop_features(feats: dict, start: int, end: int)¶
- Parameters:
[start (start - 1, end)
range (end] ->)
deepfold.utils.file_utils module¶
- deepfold.utils.file_utils.dump_pickle(obj: Any, path: PathLike, level: int = 5) None ¶
- deepfold.utils.file_utils.find_paths(paths: Sequence[PathLike]) List[Path] ¶
- deepfold.utils.file_utils.get_file_content_and_extension(file_path: PathLike) Tuple[str, str] ¶
Reads the content of a text file or compressed text file and returns its content along with the real extension (excluding compression extensions like .gz).
- Parameters:
file_path (str) – Path to the text file or compressed text file.
- Returns:
A tuple containing the file content (str) and the real extension (str).
- Return type:
tuple
- deepfold.utils.file_utils.load_pickle(path: PathLike) Any ¶
- deepfold.utils.file_utils.read_text(path: PathLike) str ¶
- deepfold.utils.file_utils.restore_wrapper(func)¶
deepfold.utils.hash_utils module¶
- deepfold.utils.hash_utils.hash_string_into_number(s: str) int ¶
Hashes string into uint64-like integer number.
deepfold.utils.import_utils module¶
- class deepfold.utils.import_utils.Param(param: Union[torch.Tensor, List[torch.Tensor]], param_type: deepfold.utils.import_utils.ParamType = <ParamType.Other: functools.partial(<function ParamType.<lambda> at 0x7f1642212560>)>, stacked: bool = False, swap: bool = False)¶
Bases:
object
- param: Tensor | List[Tensor]¶
- stacked: bool = False¶
- swap: bool = False¶
- class deepfold.utils.import_utils.ParamType(value)¶
Bases:
Enum
An enumeration.
- LinearBiasMHA = functools.partial(<function ParamType.<lambda>>)¶
- LinearMHAOutputWeight = functools.partial(<function ParamType.<lambda>>)¶
- LinearWeight = functools.partial(<function ParamType.<lambda>>)¶
- LinearWeightMHA = functools.partial(<function ParamType.<lambda>>)¶
- LinearWeightOPM = functools.partial(<function ParamType.<lambda>>)¶
- Other = functools.partial(<function ParamType.<lambda>>)¶
- deepfold.utils.import_utils.assign(translation_dict, orig_weights)¶
- deepfold.utils.import_utils.import_jax_weights_(model: AlphaFold, npz_path: str, is_multimer: bool = False, enable_ptm: bool = False, enable_templates: bool = False, fuse_projection_weights: bool = False) None ¶
Import AlphaFold JAX parameters.
- Parameters:
model – AlphaFold model.
npz_path – Path to an NPZ file.
is_multimer – Whether multimer model or not.
enable_ptm – Enable predicted aligned error related modules.
enable_templates – Enable template related modules.
fuse_projection_weights – Whether triangular multiplicative layers are fused or not.
- deepfold.utils.import_utils.reshape_weight(x: ndarray) ndarray ¶
- deepfold.utils.import_utils.stacked(param_dict_list, out=None)¶
- Parameters:
param_dict_list – A list of (nested) Param dicts to stack. The structure of each dict must be the identical (down to the ParamTypes of “parallel” Params). There must be at least one dict in the list.
deepfold.utils.iter_utils module¶
- deepfold.utils.iter_utils.all_equal(values: list) bool ¶
Checks if all values in list are equal to each other.
- deepfold.utils.iter_utils.flatten_dict(d: MutableMapping, parent_key: str = '', sep: str = '.')¶
- deepfold.utils.iter_utils.list_zip(*arglists) list ¶
Transforms given columns into list of rows.
- deepfold.utils.iter_utils.map_dict_values(fn: Callable, d: dict) dict ¶
Maps dictionary values using given function.
- deepfold.utils.iter_utils.slice_generator(start: int, end: int, size: int) Iterator[Tuple[int, int]] ¶
Returns slice indices iterator from start to end.
deepfold.utils.log_utils module¶
- class deepfold.utils.log_utils.TqdmHandler¶
Bases:
StreamHandler
- emit(record: LogRecord) None ¶
Emit a record.
If a formatter is specified, it is used to format the record. The record is then written to the stream with a trailing newline. If exception information is present, it is formatted using traceback.print_exception and appended to the stream. If the stream has an ‘encoding’ attribute, it is used to determine how to do the output to the stream.
- deepfold.utils.log_utils.read_logs(filepath: Path, drop_overridden_iterations: bool = True) DataFrame ¶
- deepfold.utils.log_utils.save_logs(logs: List[dict], outpath: Path, append: bool) None ¶
- deepfold.utils.log_utils.setup_logging(filename: str | PathLike | Path, mode: str = 'w') None ¶
deepfold.utils.precision module¶
- deepfold.utils.precision.is_fp16_enabled() bool ¶
deepfold.utils.random module¶
- deepfold.utils.random.get_seed_from_string(s: str) int ¶
Hashes input string and returns uint64-like integer seed value.
- deepfold.utils.random.get_seed_randomly() int ¶
Returns truly pseduorandom uint64-like integer seed value.
- deepfold.utils.random.numpy_seed(seed: int | None = None, *additional_seeds, key: str = '')¶
Context manager which seeds the Numpy PRNG with the seed and restores the state.
- deepfold.utils.random.str_hash(string: str)¶
deepfold.utils.rigid_utils module¶
- class deepfold.utils.rigid_utils.Rigid(rots: Rotation | None, trans: Tensor | None)¶
Bases:
object
A class representing a rigid transformation. Little more than a wrapper around two objects: a Rotation object and a [*, 3] translation Designed to behave approximately like a single torch tensor with the shape of the shared batch dimensions of its component parts.
- apply(pts: Tensor) Tensor ¶
Applies the transformation to a coordinate tensor.
- Parameters:
pts – A [*, 3] coordinate tensor.
- Returns:
The transformed points.
- apply_rot_fn(fn: Callable[[Rotation], Rotation]) Rigid ¶
Applies a Rotation -> Rotation function to the stored rotation object.
- Parameters:
fn – A function of type Rotation -> Rotation
- Returns:
A transformation object with a transformed rotation.
- apply_trans_fn(fn: Callable[[Tensor], Tensor]) Rigid ¶
Applies a Tensor -> Tensor function to the stored translation.
- Parameters:
fn – A function of type Tensor -> Tensor to be applied to the translation
- Returns:
A transformation object with a transformed translation.
- static cat(ts: Sequence[Rigid], dim: int) Rigid ¶
Concatenates transformations along a new dimension.
- Parameters:
ts – A list of T objects
dim – The dimension along which the transformations should be concatenated
- Returns:
A concatenated transformation object
- compose(r: Rigid) Rigid ¶
Composes the current rigid object with another.
- Parameters:
r – Another Rigid object
- Returns:
The composition of the two transformations
- compose_q_update_vec(q_update_vec: Tensor) Rigid ¶
Composes the transformation with a quaternion update vector of shape [*, 6], where the final 6 columns represent the x, y, and z values of a quaternion of form (1, x, y, z) followed by a 3D translation.
- Parameters:
q_vec – The quaternion update vector.
- Returns:
The composed transformation.
- cuda() Rigid ¶
Moves the transformation object to GPU memory
- Returns:
A version of the transformation on GPU
- property device: device¶
Returns the device on which the Rigid’s tensors are located.
- Returns:
The device on which the Rigid’s tensors are located
- property dtype: dtype¶
Returns the dtype of the Rigid tensors.
- Returns:
The dtype of the Rigid tensors
- static from_3_points(p_neg_x_axis: Tensor, origin: Tensor, p_xy_plane: Tensor, eps: float = 1e-08) Rigid ¶
Implements algorithm 21. Constructs transformations from sets of 3 points using the Gram-Schmidt algorithm.
- static from_tensor_4x4(t: Tensor) Rigid ¶
Constructs a transformation from a homogenous transformation tensor.
- Parameters:
t – [*, 4, 4] homogenous transformation tensor
- Returns:
T object with shape [*]
- get_trans() Tensor ¶
Getter for the translation.
- Returns:
The stored translation
- static identity(shape: Tuple[int], dtype: dtype | None = None, device: device | None = None, requires_grad: bool = True, fmt: str = 'quat') Rigid ¶
Constructs an identity transformation.
- Parameters:
shape – The desired shape
dtype – The dtype of both internal tensors
device – The device of both internal tensors
requires_grad – Whether grad should be enabled for the internal tensors
- Returns:
The identity transformation
- invert_apply(pts: Tensor) Tensor ¶
Applies the inverse of the transformation to a coordinate tensor.
- Parameters:
pts – A [*, 3] coordinate tensor
- Returns:
The transformed points.
- static make_transform_from_reference(n_xyz, ca_xyz, c_xyz, eps=1e-20)¶
Returns a transformation object from reference coordinates.
Note that this method does not take care of symmetries. If you provide the atom positions in the non-standard way, the N atom will end up not at [-0.527250, 1.359329, 0.0] but instead at [-0.527250, -1.359329, 0.0]. You need to take care of such cases in your code.
- Parameters:
- Returns:
A transformation object. After applying the translation and rotation to the reference backbone, the coordinates will approximately equal to the input coordinates.
- map_tensor_fn(fn: Callable[[Tensor], Tensor]) Rigid ¶
Apply a Tensor -> Tensor function to underlying translation and rotation tensors, mapping over the translation/rotation dimensions respectively.
- Parameters:
fn – A Tensor -> Tensor function to be mapped over the Rigid
- Returns:
The transformed Rigid object
- scale_translation(trans_scale_factor: float) Rigid ¶
Scales the translation by a constant factor.
- Parameters:
trans_scale_factor – The constant factor
- Returns:
A transformation object with a scaled translation.
- property shape: Size¶
Returns the shape of the shared dimensions of the rotation and the translation.
- Returns:
The shape of the transformation
- stop_rot_gradient() Rigid ¶
Detaches the underlying rotation object
- Returns:
A transformation object with detached rotations
- to_tensor_4x4() Tensor ¶
Converts a transformation to a homogenous transformation tensor.
- Returns:
A [*, 4, 4] homogenous transformation tensor
- class deepfold.utils.rigid_utils.Rotation(rot_mats: Tensor | None = None, quats: Tensor | None = None, normalize_quats: bool = True)¶
Bases:
object
A 3D rotation. Depending on how the object is initialized, the rotation is represented by either a rotation matrix or a quaternion, though both formats are made available by helper functions. To simplify gradient computation, the underlying format of the rotation cannot be changed in-place. Like Rigid, the class is designed to mimic the behavior of a torch Tensor, almost as if each Rotation object were a tensor of rotations, in one format or another.
- apply(pts: Tensor) Tensor ¶
Apply the current Rotation as a rotation matrix to a set of 3D coordinates.
- static cat(rs: Sequence[Rotation], dim: int) Rotation ¶
Concatenates rotations along one of the batch dimensions. Analogous to torch.cat().
Note that the output of this operation is always a rotation matrix, regardless of the format of input rotations.
- Parameters:
rs – A list of rotation objects
dim – The dimension along which the rotations should be concatenated
- Returns:
A concatenated Rotation object in rotation matrix format
- compose_q(r: Rotation, normalize_quats: bool = True) Rotation ¶
Compose the quaternions of the current Rotation object with those of another.
Depending on whether either Rotation was initialized with quaternions, this function may call torch.linalg.eigh.
- Parameters:
r – An update rotation object
- Returns:
An updated rotation object
- compose_q_update_vec(q_update_vec: Tensor, normalize_quats: bool = True) Rotation ¶
Returns a new quaternion Rotation after updating the current object’s underlying rotation with a quaternion update, formatted as a [*, 3] tensor whose final three columns represent x, y, z such that (1, x, y, z) is the desired (not necessarily unit) quaternion update.
- Parameters:
q_update_vec – A [*, 3] quaternion update tensor
normalize_quats – Whether to normalize the output quaternion
- Returns:
An updated Rotation
- compose_r(r: Rotation) Rotation ¶
Compose the rotation matrices of the current Rotation object with those of another.
- Parameters:
r – An update rotation object
- Returns:
An updated rotation object
- cuda() Rotation ¶
Analogous to the cuda() method of torch Tensors
- Returns:
A copy of the Rotation in CUDA memory
- detach() Rotation ¶
Returns a copy of the Rotation whose underlying Tensor has been detached from its torch graph.
- Returns:
A copy of the Rotation whose underlying Tensor has been detached from its torch graph
- property device: device¶
The device of the underlying rotation
- Returns:
The device of the underlying rotation
- property dtype: dtype¶
Returns the dtype of the underlying rotation.
- Returns:
The dtype of the underlying rotation
- get_cur_rot() Tensor ¶
Return the underlying rotation in its current form
- Returns:
The stored rotation
- get_quats() Tensor ¶
Returns the underlying rotation as a quaternion tensor.
Depending on whether the Rotation was initialized with a quaternion, this function may call torch.linalg.eigh.
- Returns:
The rotation as a quaternion tensor.
- get_rot_mats() Tensor ¶
Returns the underlying rotation as a rotation matrix tensor.
- Returns:
The rotation as a rotation matrix tensor
- static identity(shape, dtype: dtype | None = None, device: device | None = None, requires_grad: bool = True, fmt: str = 'quat') Rotation ¶
Returns an identity Rotation.
- Parameters:
shape – The “shape” of the resulting Rotation object. See documentation for the shape property
dtype – The torch dtype for the rotation
device – The torch device for the new rotation
requires_grad – Whether the underlying tensors in the new rotation object should require gradient computation
fmt – One of “quat” or “rot_mat”. Determines the underlying format of the new object’s rotation
- Returns:
A new identity rotation
- invert() Rotation ¶
Returns the inverse of the current Rotation.
- Returns:
The inverse of the current Rotation
- invert_apply(pts: Tensor) Tensor ¶
The inverse of the apply() method.
- map_tensor_fn(fn: Callable[[Tensor], Tensor]) Rotation ¶
Apply a Tensor -> Tensor function to underlying rotation tensors, mapping over the rotation dimension(s). Can be used e.g. to sum out a one-hot batch dimension.
- Parameters:
fn – A Tensor -> Tensor function to be mapped over the Rotation
- Returns:
The transformed Rotation object
- property requires_grad: bool¶
Returns the requires_grad property of the underlying rotation
- Returns:
The requires_grad property of the underlying tensor
- property shape: Size¶
Returns the virtual shape of the rotation object. This shape is defined as the batch dimensions of the underlying rotation matrix or quaternion. If the Rotation was initialized with a [10, 3, 3] rotation matrix tensor, for example, the resulting shape would be [10].
- Returns:
The virtual shape of the rotation object
- deepfold.utils.rigid_utils.identity_quats(batch_dims: Tuple[int], dtype: dtype | None = None, device: device | None = None, requires_grad: bool = True) Tensor ¶
- deepfold.utils.rigid_utils.identity_rot_mats(batch_dims: Tuple[int], dtype: dtype | None = None, device: device | None = None, requires_grad: bool = True) Tensor ¶
- deepfold.utils.rigid_utils.identity_trans(batch_dims: Tuple[int], dtype: dtype | None = None, device: device | None = None, requires_grad: bool = True) Tensor ¶
- deepfold.utils.rigid_utils.invert_quat(quat: Tensor)¶
- deepfold.utils.rigid_utils.invert_rot_mat(rot_mat: Tensor)¶
- deepfold.utils.rigid_utils.quat_multiply(quat1, quat2)¶
Multiply a quaternion by another quaternion.
- deepfold.utils.rigid_utils.quat_multiply_by_vec(quat, vec)¶
Multiply a quaternion by a pure-vector quaternion.
- deepfold.utils.rigid_utils.quat_to_rot(quat: Tensor) Tensor ¶
Converts a quaternion to a rotation matrix.
- deepfold.utils.rigid_utils.rot_matmul(a: Tensor, b: Tensor) Tensor ¶
Performs matrix multiplication of two rotation matrix tensors. Written out by hand to avoid AMP downcasting.
- deepfold.utils.rigid_utils.rot_to_quat(rot: Tensor) Tensor ¶
deepfold.utils.script_utils module¶
- deepfold.utils.script_utils.get_basename(path: PathLike)¶
- deepfold.utils.script_utils.make_output_directory(output_dir: PathLike, model_name: str)¶
- deepfold.utils.script_utils.parse_fasta(fasta_str: str)¶
deepfold.utils.swa_utils module¶
- class deepfold.utils.swa_utils.AlphaFoldSWA(alphafold: AlphaFold, enabled: bool, decay_rate: float)¶
Bases:
PatchedModule
Weight averaging wrapper.
- forward(batch)¶
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- class deepfold.utils.swa_utils.swa_avg_fn(decay_rate: float)¶
Bases:
object
Averaging function for EMA with configurable decay rate.
Suppl. ‘1.11.7 Evaluator setup’.
deepfold.utils.tensor_utils module¶
Utilities related to tensor operations.
- deepfold.utils.tensor_utils.add(m1: Tensor, m2: Tensor, inplace: bool) Tensor ¶
- deepfold.utils.tensor_utils.array_tree_map(fn, tree, *, leaf_type=<class 'numpy.ndarray'>)¶
- deepfold.utils.tensor_utils.batched_gather(data: Tensor, inds: Tensor, dim: int = 0, num_batch_dims: int = 0) Tensor ¶
- deepfold.utils.tensor_utils.collate(samples: List[dict]) dict ¶
Converts list of samples into a batch dict.
- deepfold.utils.tensor_utils.dict_map(fn: Callable[[T], Any], dic: Dict[Any, dict | list | tuple | T], leaf_type: Type[T]) Dict[Any, dict | list | tuple | Any] ¶
- deepfold.utils.tensor_utils.dict_multimap(fn: Callable, dicts: List[Dict[Any, Any]]) Dict[Any, Any] ¶
- deepfold.utils.tensor_utils.flatten_final_dims(t: Tensor, num_dims: int) Tensor ¶
- deepfold.utils.tensor_utils.masked_mean(mask: Tensor, value: Tensor, dim: int | Tuple[int, ...], eps: float = 0.0001, keepdim: bool = False) Tensor ¶
- deepfold.utils.tensor_utils.one_hot(x: Tensor, v_bins: Tensor) Tensor ¶
- deepfold.utils.tensor_utils.permute_final_dims(tensor: Tensor, inds: List[int]) Tensor ¶
- deepfold.utils.tensor_utils.pts_to_distogram(pts: Tensor, min_bin: float = 2.2325, max_bin: float = 21.6875, num_bins: int = 64) Tensor ¶
- deepfold.utils.tensor_utils.tensor_tree_map(fn, tree, *, leaf_type=<class 'torch.Tensor'>)¶
- deepfold.utils.tensor_utils.tree_map(fn: Callable[[T], Any], tree: T, leaf_type: Type[T]) Any ¶
- deepfold.utils.tensor_utils.tree_map(fn: Callable[[T], Any], tree: dict, leaf_type: Type[T]) dict
- deepfold.utils.tensor_utils.tree_map(fn: Callable[[T], Any], tree: list, leaf_type: Type[T]) list
- deepfold.utils.tensor_utils.tree_map(fn: Callable[[T], Any], tree: tuple, leaf_type: Type[T]) tuple