deepfold.utils.geometry package¶
Submodules¶
deepfold.utils.geometry.quat_rigid module¶
- class deepfold.utils.geometry.quat_rigid.QuatRigid(c_hidden, full_quat)¶
Bases:
PatchedModule
- forward(activations: Tensor) Rigid3Array ¶
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
deepfold.utils.geometry.rigid_matrix_vector module¶
Rigid3Array Transformations represented by a Matrix and a Vector.
- class deepfold.utils.geometry.rigid_matrix_vector.Rigid3Array(rotation: Rot3Array, translation: Vec3Array)¶
Bases:
object
Rigid Transformation, i.e. element of special euclidean group.
- apply(point: Tensor) Tensor ¶
- classmethod cat(rigids: List[Rigid3Array], dim: int) Rigid3Array ¶
- compose(other_rigid)¶
- compose_rotation(other_rotation)¶
- cuda() Rigid3Array ¶
- property device: device¶
- property dtype: dtype¶
- classmethod from_array(array)¶
- classmethod from_array4x4(array: Tensor) Rigid3Array ¶
Construct Rigid3Array from homogeneous 4x4 array.
- classmethod from_tensor_4x4(array)¶
- classmethod identity(shape, device) Rigid3Array ¶
Return identity Rigid3Array of given shape.
- inverse() Rigid3Array ¶
Return Rigid3Array corresponding to inverse transform.
- invert_apply(point: Tensor) Tensor ¶
- map_tensor_fn(fn) Rigid3Array ¶
- reshape(new_shape) Rigid3Array ¶
- scale_translation(factor: float | Tensor) Rigid3Array ¶
Scale translation in Rigid3Array by ‘factor’.
- property shape: Size¶
- stop_rot_gradient() Rigid3Array ¶
- to_tensor() Tensor ¶
- to_tensor_4x4() Tensor ¶
- unsqueeze(dim: int)¶
deepfold.utils.geometry.rotation_matrix module¶
Rot3Array Matrix Class.
- class deepfold.utils.geometry.rotation_matrix.Rot3Array(xx: Tensor, xy: Tensor, xz: Tensor, yx: Tensor, yy: Tensor, yz: Tensor, zx: Tensor, zy: Tensor, zz: Tensor)¶
Bases:
object
Rot3Array Matrix in 3 dimensional Space implemented as struct of arrays.
- classmethod from_array(array: Tensor) Rot3Array ¶
Construct Rot3Array Matrix from array of shape. […, 3, 3].
- classmethod from_quaternion(w: Tensor, x: Tensor, y: Tensor, z: Tensor, normalize: bool = True, eps: float = 1e-06) Rot3Array ¶
Construct Rot3Array from components of quaternion.
- classmethod from_two_vectors(e0: Vec3Array, e1: Vec3Array) Rot3Array ¶
Construct Rot3Array from two Vectors.
Rot3Array is constructed such that in the corresponding frame ‘e0’ lies on the positive x-Axis and ‘e1’ lies in the xy plane with positive sign of y.
- Parameters:
e0 – Vector
e1 – Vector
- Returns:
Rot3Array
- reshape(new_shape)¶
- to_tensor() Tensor ¶
Convert Rot3Array to array of shape […, 3, 3].
- unsqueeze(dim: int)¶
- xx: Tensor¶
- xy: Tensor¶
- xz: Tensor¶
- yx: Tensor¶
- yy: Tensor¶
- yz: Tensor¶
- zx: Tensor¶
- zy: Tensor¶
- zz: Tensor¶
deepfold.utils.geometry.utils module¶
Utils for geometry library.
- deepfold.utils.geometry.utils.get_field_names(cls)¶
deepfold.utils.geometry.vector module¶
Vec3Array Class.
- class deepfold.utils.geometry.vector.Vec3Array(x: 'torch.Tensor', y: 'torch.Tensor', z: 'torch.Tensor')¶
Bases:
object
- classmethod from_array(tensor)¶
- norm(epsilon: float = 1e-06) float | Tensor ¶
Compute Norm of Vec3Array, clipped to epsilon.
- norm2()¶
- property shape¶
- to_tensor() Tensor ¶
- unsqueeze(dim: int)¶
- x: Tensor¶
- y: Tensor¶
- z: Tensor¶
- classmethod zeros(shape, device='cpu')¶
Return Vec3Array corresponding to zeros of given shape.
- deepfold.utils.geometry.vector.dihedral_angle(a: Vec3Array, b: Vec3Array, c: Vec3Array, d: Vec3Array) float | Tensor ¶
Computes torsion angle for a quadruple of points.
For points (a, b, c, d), this is the angle between the planes defined by points (a, b, c) and (b, c, d). It is also known as the dihedral angle.
- Parameters:
a – A Vec3Array of coordinates.
b – A Vec3Array of coordinates.
c – A Vec3Array of coordinates.
d – A Vec3Array of coordinates.
- Returns:
[-pi, pi].
- Return type:
A tensor of angles in radians
- deepfold.utils.geometry.vector.euclidean_distance(vec1: Vec3Array, vec2: Vec3Array, epsilon: float = 1e-06) float | Tensor ¶
Computes euclidean distance between ‘vec1’ and ‘vec2’.
- Parameters:
vec1 – Vec3Array to compute euclidean distance to
vec2 – Vec3Array to compute euclidean distance from, should be broadcast compatible with ‘vec1’
epsilon – distance is clipped from below to be at least epsilon
- Returns:
Array of euclidean distances; shape will be result of broadcasting ‘vec1’ and ‘vec2’
- deepfold.utils.geometry.vector.square_euclidean_distance(vec1: Vec3Array, vec2: Vec3Array, epsilon: float = 1e-06) float | Tensor ¶
Computes square of euclidean distance between ‘vec1’ and ‘vec2’.
- Parameters:
vec1 – Vec3Array to compute distance to
vec2 – Vec3Array to compute distance from, should be broadcast compatible with ‘vec1’
epsilon – distance is clipped from below to be at least epsilon
- Returns:
Array of square euclidean distances; shape will be result of broadcasting ‘vec1’ and ‘vec2’
Module contents¶
- class deepfold.utils.geometry.Rigid(rots: Rotation | None, trans: Tensor | None)¶
Bases:
object
A class representing a rigid transformation. Little more than a wrapper around two objects: a Rotation object and a [*, 3] translation Designed to behave approximately like a single torch tensor with the shape of the shared batch dimensions of its component parts.
- apply(pts: Tensor) Tensor ¶
Applies the transformation to a coordinate tensor.
- Parameters:
pts – A [*, 3] coordinate tensor.
- Returns:
The transformed points.
- apply_rot_fn(fn: Callable[[Rotation], Rotation]) Rigid ¶
Applies a Rotation -> Rotation function to the stored rotation object.
- Parameters:
fn – A function of type Rotation -> Rotation
- Returns:
A transformation object with a transformed rotation.
- apply_trans_fn(fn: Callable[[Tensor], Tensor]) Rigid ¶
Applies a Tensor -> Tensor function to the stored translation.
- Parameters:
fn – A function of type Tensor -> Tensor to be applied to the translation
- Returns:
A transformation object with a transformed translation.
- static cat(ts: Sequence[Rigid], dim: int) Rigid ¶
Concatenates transformations along a new dimension.
- Parameters:
ts – A list of T objects
dim – The dimension along which the transformations should be concatenated
- Returns:
A concatenated transformation object
- compose(r: Rigid) Rigid ¶
Composes the current rigid object with another.
- Parameters:
r – Another Rigid object
- Returns:
The composition of the two transformations
- compose_q_update_vec(q_update_vec: Tensor) Rigid ¶
Composes the transformation with a quaternion update vector of shape [*, 6], where the final 6 columns represent the x, y, and z values of a quaternion of form (1, x, y, z) followed by a 3D translation.
- Parameters:
q_vec – The quaternion update vector.
- Returns:
The composed transformation.
- cuda() Rigid ¶
Moves the transformation object to GPU memory
- Returns:
A version of the transformation on GPU
- property device: device¶
Returns the device on which the Rigid’s tensors are located.
- Returns:
The device on which the Rigid’s tensors are located
- property dtype: dtype¶
Returns the dtype of the Rigid tensors.
- Returns:
The dtype of the Rigid tensors
- static from_3_points(p_neg_x_axis: Tensor, origin: Tensor, p_xy_plane: Tensor, eps: float = 1e-08) Rigid ¶
Implements algorithm 21. Constructs transformations from sets of 3 points using the Gram-Schmidt algorithm.
- static from_tensor_4x4(t: Tensor) Rigid ¶
Constructs a transformation from a homogenous transformation tensor.
- Parameters:
t – [*, 4, 4] homogenous transformation tensor
- Returns:
T object with shape [*]
- get_trans() Tensor ¶
Getter for the translation.
- Returns:
The stored translation
- static identity(shape: Tuple[int], dtype: dtype | None = None, device: device | None = None, requires_grad: bool = True, fmt: str = 'quat') Rigid ¶
Constructs an identity transformation.
- Parameters:
shape – The desired shape
dtype – The dtype of both internal tensors
device – The device of both internal tensors
requires_grad – Whether grad should be enabled for the internal tensors
- Returns:
The identity transformation
- invert_apply(pts: Tensor) Tensor ¶
Applies the inverse of the transformation to a coordinate tensor.
- Parameters:
pts – A [*, 3] coordinate tensor
- Returns:
The transformed points.
- static make_transform_from_reference(n_xyz, ca_xyz, c_xyz, eps=1e-20)¶
Returns a transformation object from reference coordinates.
Note that this method does not take care of symmetries. If you provide the atom positions in the non-standard way, the N atom will end up not at [-0.527250, 1.359329, 0.0] but instead at [-0.527250, -1.359329, 0.0]. You need to take care of such cases in your code.
- Parameters:
- Returns:
A transformation object. After applying the translation and rotation to the reference backbone, the coordinates will approximately equal to the input coordinates.
- map_tensor_fn(fn: Callable[[Tensor], Tensor]) Rigid ¶
Apply a Tensor -> Tensor function to underlying translation and rotation tensors, mapping over the translation/rotation dimensions respectively.
- Parameters:
fn – A Tensor -> Tensor function to be mapped over the Rigid
- Returns:
The transformed Rigid object
- scale_translation(trans_scale_factor: float) Rigid ¶
Scales the translation by a constant factor.
- Parameters:
trans_scale_factor – The constant factor
- Returns:
A transformation object with a scaled translation.
- property shape: Size¶
Returns the shape of the shared dimensions of the rotation and the translation.
- Returns:
The shape of the transformation
- stop_rot_gradient() Rigid ¶
Detaches the underlying rotation object
- Returns:
A transformation object with detached rotations
- to_tensor_4x4() Tensor ¶
Converts a transformation to a homogenous transformation tensor.
- Returns:
A [*, 4, 4] homogenous transformation tensor
- class deepfold.utils.geometry.Rigid3Array(rotation: Rot3Array, translation: Vec3Array)¶
Bases:
object
Rigid Transformation, i.e. element of special euclidean group.
- apply(point: Tensor) Tensor ¶
- classmethod cat(rigids: List[Rigid3Array], dim: int) Rigid3Array ¶
- compose(other_rigid)¶
- compose_rotation(other_rotation)¶
- cuda() Rigid3Array ¶
- property device: device¶
- property dtype: dtype¶
- classmethod from_array(array)¶
- classmethod from_array4x4(array: Tensor) Rigid3Array ¶
Construct Rigid3Array from homogeneous 4x4 array.
- classmethod from_tensor_4x4(array)¶
- classmethod identity(shape, device) Rigid3Array ¶
Return identity Rigid3Array of given shape.
- inverse() Rigid3Array ¶
Return Rigid3Array corresponding to inverse transform.
- invert_apply(point: Tensor) Tensor ¶
- map_tensor_fn(fn) Rigid3Array ¶
- reshape(new_shape) Rigid3Array ¶
- scale_translation(factor: float | Tensor) Rigid3Array ¶
Scale translation in Rigid3Array by ‘factor’.
- property shape: Size¶
- stop_rot_gradient() Rigid3Array ¶
- to_tensor() Tensor ¶
- to_tensor_4x4() Tensor ¶
- unsqueeze(dim: int)¶
- class deepfold.utils.geometry.Rot3Array(xx: Tensor, xy: Tensor, xz: Tensor, yx: Tensor, yy: Tensor, yz: Tensor, zx: Tensor, zy: Tensor, zz: Tensor)¶
Bases:
object
Rot3Array Matrix in 3 dimensional Space implemented as struct of arrays.
- classmethod from_array(array: Tensor) Rot3Array ¶
Construct Rot3Array Matrix from array of shape. […, 3, 3].
- classmethod from_quaternion(w: Tensor, x: Tensor, y: Tensor, z: Tensor, normalize: bool = True, eps: float = 1e-06) Rot3Array ¶
Construct Rot3Array from components of quaternion.
- classmethod from_two_vectors(e0: Vec3Array, e1: Vec3Array) Rot3Array ¶
Construct Rot3Array from two Vectors.
Rot3Array is constructed such that in the corresponding frame ‘e0’ lies on the positive x-Axis and ‘e1’ lies in the xy plane with positive sign of y.
- Parameters:
e0 – Vector
e1 – Vector
- Returns:
Rot3Array
- reshape(new_shape)¶
- to_tensor() Tensor ¶
Convert Rot3Array to array of shape […, 3, 3].
- unsqueeze(dim: int)¶
- xx: Tensor¶
- xy: Tensor¶
- xz: Tensor¶
- yx: Tensor¶
- yy: Tensor¶
- yz: Tensor¶
- zx: Tensor¶
- zy: Tensor¶
- zz: Tensor¶
- class deepfold.utils.geometry.Rotation(rot_mats: Tensor | None = None, quats: Tensor | None = None, normalize_quats: bool = True)¶
Bases:
object
A 3D rotation. Depending on how the object is initialized, the rotation is represented by either a rotation matrix or a quaternion, though both formats are made available by helper functions. To simplify gradient computation, the underlying format of the rotation cannot be changed in-place. Like Rigid, the class is designed to mimic the behavior of a torch Tensor, almost as if each Rotation object were a tensor of rotations, in one format or another.
- apply(pts: Tensor) Tensor ¶
Apply the current Rotation as a rotation matrix to a set of 3D coordinates.
- static cat(rs: Sequence[Rotation], dim: int) Rotation ¶
Concatenates rotations along one of the batch dimensions. Analogous to torch.cat().
Note that the output of this operation is always a rotation matrix, regardless of the format of input rotations.
- Parameters:
rs – A list of rotation objects
dim – The dimension along which the rotations should be concatenated
- Returns:
A concatenated Rotation object in rotation matrix format
- compose_q(r: Rotation, normalize_quats: bool = True) Rotation ¶
Compose the quaternions of the current Rotation object with those of another.
Depending on whether either Rotation was initialized with quaternions, this function may call torch.linalg.eigh.
- Parameters:
r – An update rotation object
- Returns:
An updated rotation object
- compose_q_update_vec(q_update_vec: Tensor, normalize_quats: bool = True) Rotation ¶
Returns a new quaternion Rotation after updating the current object’s underlying rotation with a quaternion update, formatted as a [*, 3] tensor whose final three columns represent x, y, z such that (1, x, y, z) is the desired (not necessarily unit) quaternion update.
- Parameters:
q_update_vec – A [*, 3] quaternion update tensor
normalize_quats – Whether to normalize the output quaternion
- Returns:
An updated Rotation
- compose_r(r: Rotation) Rotation ¶
Compose the rotation matrices of the current Rotation object with those of another.
- Parameters:
r – An update rotation object
- Returns:
An updated rotation object
- cuda() Rotation ¶
Analogous to the cuda() method of torch Tensors
- Returns:
A copy of the Rotation in CUDA memory
- detach() Rotation ¶
Returns a copy of the Rotation whose underlying Tensor has been detached from its torch graph.
- Returns:
A copy of the Rotation whose underlying Tensor has been detached from its torch graph
- property device: device¶
The device of the underlying rotation
- Returns:
The device of the underlying rotation
- property dtype: dtype¶
Returns the dtype of the underlying rotation.
- Returns:
The dtype of the underlying rotation
- get_cur_rot() Tensor ¶
Return the underlying rotation in its current form
- Returns:
The stored rotation
- get_quats() Tensor ¶
Returns the underlying rotation as a quaternion tensor.
Depending on whether the Rotation was initialized with a quaternion, this function may call torch.linalg.eigh.
- Returns:
The rotation as a quaternion tensor.
- get_rot_mats() Tensor ¶
Returns the underlying rotation as a rotation matrix tensor.
- Returns:
The rotation as a rotation matrix tensor
- static identity(shape, dtype: dtype | None = None, device: device | None = None, requires_grad: bool = True, fmt: str = 'quat') Rotation ¶
Returns an identity Rotation.
- Parameters:
shape – The “shape” of the resulting Rotation object. See documentation for the shape property
dtype – The torch dtype for the rotation
device – The torch device for the new rotation
requires_grad – Whether the underlying tensors in the new rotation object should require gradient computation
fmt – One of “quat” or “rot_mat”. Determines the underlying format of the new object’s rotation
- Returns:
A new identity rotation
- invert() Rotation ¶
Returns the inverse of the current Rotation.
- Returns:
The inverse of the current Rotation
- invert_apply(pts: Tensor) Tensor ¶
The inverse of the apply() method.
- map_tensor_fn(fn: Callable[[Tensor], Tensor]) Rotation ¶
Apply a Tensor -> Tensor function to underlying rotation tensors, mapping over the rotation dimension(s). Can be used e.g. to sum out a one-hot batch dimension.
- Parameters:
fn – A Tensor -> Tensor function to be mapped over the Rotation
- Returns:
The transformed Rotation object
- property requires_grad: bool¶
Returns the requires_grad property of the underlying rotation
- Returns:
The requires_grad property of the underlying tensor
- property shape: Size¶
Returns the virtual shape of the rotation object. This shape is defined as the batch dimensions of the underlying rotation matrix or quaternion. If the Rotation was initialized with a [10, 3, 3] rotation matrix tensor, for example, the resulting shape would be [10].
- Returns:
The virtual shape of the rotation object
- class deepfold.utils.geometry.Vec3Array(x: 'torch.Tensor', y: 'torch.Tensor', z: 'torch.Tensor')¶
Bases:
object
- classmethod from_array(tensor)¶
- norm(epsilon: float = 1e-06) float | Tensor ¶
Compute Norm of Vec3Array, clipped to epsilon.
- norm2()¶
- property shape¶
- to_tensor() Tensor ¶
- unsqueeze(dim: int)¶
- x: Tensor¶
- y: Tensor¶
- z: Tensor¶
- classmethod zeros(shape, device='cpu')¶
Return Vec3Array corresponding to zeros of given shape.
- deepfold.utils.geometry.dihedral_angle(a: Vec3Array, b: Vec3Array, c: Vec3Array, d: Vec3Array) float | Tensor ¶
Computes torsion angle for a quadruple of points.
For points (a, b, c, d), this is the angle between the planes defined by points (a, b, c) and (b, c, d). It is also known as the dihedral angle.
- Parameters:
a – A Vec3Array of coordinates.
b – A Vec3Array of coordinates.
c – A Vec3Array of coordinates.
d – A Vec3Array of coordinates.
- Returns:
[-pi, pi].
- Return type:
A tensor of angles in radians
- deepfold.utils.geometry.euclidean_distance(vec1: Vec3Array, vec2: Vec3Array, epsilon: float = 1e-06) float | Tensor ¶
Computes euclidean distance between ‘vec1’ and ‘vec2’.
- Parameters:
vec1 – Vec3Array to compute euclidean distance to
vec2 – Vec3Array to compute euclidean distance from, should be broadcast compatible with ‘vec1’
epsilon – distance is clipped from below to be at least epsilon
- Returns:
Array of euclidean distances; shape will be result of broadcasting ‘vec1’ and ‘vec2’
- deepfold.utils.geometry.square_euclidean_distance(vec1: Vec3Array, vec2: Vec3Array, epsilon: float = 1e-06) float | Tensor ¶
Computes square of euclidean distance between ‘vec1’ and ‘vec2’.
- Parameters:
vec1 – Vec3Array to compute distance to
vec2 – Vec3Array to compute distance from, should be broadcast compatible with ‘vec1’
epsilon – distance is clipped from below to be at least epsilon
- Returns:
Array of square euclidean distances; shape will be result of broadcasting ‘vec1’ and ‘vec2’