promptbind package¶
Subpackages¶
- promptbind.data package
- promptbind.models package
- Submodules
- promptbind.models.att_model module
- promptbind.models.cross_att module
- promptbind.models.egnn module
- promptbind.models.model module
- promptbind.models.model_utils module
- Module contents
- promptbind.utils package
- Submodules
- promptbind.utils.fabind_inference_dataset module
- promptbind.utils.feature_utils module
Seed_everything()
binarize()
extract_torchdrug_feature_from_mol()
extract_torchdrug_feature_from_mol_E3Bind()
generate_and_write_sdf_from_smiles_using_rdkit_E3Bind()
generate_conformation()
generate_rdkit_conformation_v2()
generate_sdf_from_smiles_using_rdkit()
generate_sdf_from_smiles_using_rdkit_E3Bind()
get_LAS_distance_constraint_mask()
get_canonical_smiles()
get_clean_res_list()
get_compound_pair_dis_distribution()
get_protein_feature()
get_res_unique_id()
n_hops_adj()
read_mol()
remove_hetero_and_extract_ligand()
save_cleaned_protein()
select_chain_within_cutoff_to_ligand_v2()
split_protein_and_ligand()
write_renumbered_sdf()
write_with_new_coords()
- promptbind.utils.generation_utils module
- promptbind.utils.inference_mol_utils module
- promptbind.utils.inference_pdb_utils module
- promptbind.utils.logging_utils module
- promptbind.utils.metrics module
- promptbind.utils.metrics_to_tsb module
- promptbind.utils.post_optim_utils module
- promptbind.utils.utils module
SetDihedral()
compute_dis_between_two_vector()
compute_dis_between_two_vector_tensor()
construct_data_from_graph_gvp_mean()
evaluate_mean_pocket_cls_coord_multi_task()
evaluate_mean_pocket_cls_coord_pocket_pred()
get_keepNode()
get_keepNode_tensor()
get_protein_edge_features_and_index()
get_torsions()
gumbel_softmax_no_random()
post_optim_mol()
read_mol()
read_pdbbind_data()
uniform_random_rotation()
- Module contents
Submodules¶
promptbind.test_promptbind module¶
- class promptbind.test_promptbind.PromptBindInference(config_path='args.yml')¶
Bases:
object
- load_args()¶
- load_model()¶
- run_inference()¶
Runs the inference process for the model.
This method sets the model to evaluation mode, logs the beginning of the test, and if the current process is the main process, it evaluates the model using the provided evaluation function. The evaluation metrics are then logged.
The method waits for all processes to complete before finishing.
- Returns:
None
- setup_accelerator()¶
- setup_criterions()¶
- setup_data_loaders()¶
- setup_logger()¶
promptbind.train_promptbind module¶
promptbind.visualize_prompt_components module¶
- promptbind.visualize_prompt_components.main(opt)¶