Source code for deepfold.data.tools.hmmbuild

# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""A Python wrapper for hmmbuild - construct HMM profiles from MSA."""

import logging
import os
import re
import subprocess

from deepfold.data.tools import utils

logger = logging.getLogger(__name__)


[docs] class Hmmbuild(object): """Python wrapper of the hmmbuild binary.""" def __init__(self, *, binary_path: str, singlemx: bool = False): """Initializes the Python hmmbuild wrapper. Args: binary_path: The path to the hmmbuild executable. singlemx: Whether to use --singlemx flag. If True, it forces HMMBuild to just use a common substitution score matrix. Raises: RuntimeError: If hmmbuild binary not found within the path. """ self.binary_path = binary_path self.singlemx = singlemx
[docs] def build_profile_from_sto(self, sto: str, model_construction="fast") -> str: """Builds a HHM for the aligned sequences given as an A3M string. Args: sto: A string with the aligned sequences in the Stockholm format. model_construction: Whether to use reference annotation in the msa to determine consensus columns ('hand') or default ('fast'). Returns: A string with the profile in the HMM format. Raises: RuntimeError: If hmmbuild fails. """ return self._build_profile(sto, model_construction=model_construction)
[docs] def build_profile_from_a3m(self, a3m: str) -> str: """Builds a HHM for the aligned sequences given as an A3M string. Args: a3m: A string with the aligned sequences in the A3M format. Returns: A string with the profile in the HMM format. Raises: RuntimeError: If hmmbuild fails. """ lines = [] for line in a3m.splitlines(): if not line.startswith(">"): line = re.sub("[a-z]+", "", line) # Remove inserted residues. lines.append(line + "\n") msa = "".join(lines) return self._build_profile(msa, model_construction="fast")
def _build_profile(self, msa: str, model_construction: str = "fast") -> str: """Builds a HMM for the aligned sequences given as an MSA string. Args: msa: A string with the aligned sequences, in A3M or STO format. model_construction: Whether to use reference annotation in the msa to determine consensus columns ('hand') or default ('fast'). Returns: A string with the profile in the HMM format. Raises: RuntimeError: If hmmbuild fails. ValueError: If unspecified arguments are provided. """ if model_construction not in {"hand", "fast"}: raise ValueError(f"Invalid model_construction {model_construction} - only" "hand and fast supported.") with utils.tmpdir_manager() as query_tmp_dir: input_query = os.path.join(query_tmp_dir, "query.msa") output_hmm_path = os.path.join(query_tmp_dir, "output.hmm") with open(input_query, "w") as f: f.write(msa) cmd = [self.binary_path] # If adding flags, we have to do so before the output and input: if model_construction == "hand": cmd.append(f"--{model_construction}") if self.singlemx: cmd.append("--singlemx") cmd.extend( [ "--amino", output_hmm_path, input_query, ] ) logger.info("Launching subprocess %s", cmd) process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) with utils.timing("hmmbuild query"): stdout, stderr = process.communicate() retcode = process.wait() logger.info( "hmmbuild stdout:\n%s\n\nstderr:\n%s\n", stdout.decode("utf-8"), stderr.decode("utf-8"), ) if retcode: raise RuntimeError("hmmbuild failed\nstdout:\n%s\n\nstderr:\n%s\n" % (stdout.decode("utf-8"), stderr.decode("utf-8"))) with open(output_hmm_path, encoding="utf-8") as f: hmm = f.read() return hmm